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Abstract

Purpose – To introduce an efficient two-dimensional numerical procedure for a three-dimensional
internal flow through a complex passage with a small depth, in which the viscous effects from upper
and lower walls are significant.

Design/methodology/approach – A set of two-dimensional governing equations has been derived
by integrating the full three-dimensional Navier-Stokes equations over the depth. Then, this set of the
governing equations has been discretized using a finite volume method. Simple algorithm and quick
scheme are used to solve the resulting discretized equations.

Findings – A numerical experiment conducted to investigate the oscillation mechanism of a feedback
fluidic oscillator reveals that the feedback passage plays an important role of transmitting the pressure rise to
the control port, which triggers the jet stream to deflect towards the opposite side wall in the reaction region.
Comparison of the prediction and experiment substantiates the validity of the present numerical procedure.

Originality/value – The two-dimensional numerical procedure, proposed in this study, will be used
by researchers and practitioners to investigate various kinds of complex passages with a small depth.
Especially, those who are interested in fluidic devices may find it extremely convenient to conduct
numerical experiments.

Keywords Flow, Numerical analysis, Oscillations

Paper type Research paper

Nomenclature
f ¼ velocity profile function
h(x, y) ¼ half depth of the

passage, function for
the wall geometry

u, v, w ¼ velocity components
in the x, y and z
directions

�u; �v ¼ average velocity
components

uin ¼ bulk mean velocity at
the nozzle inlet

p ¼ pressure
ReLin

¼ ðuinLinÞ=n ¼ Reynolds number based
on Lin and uin
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St ¼ ð fLinÞ=uin ¼ Strouhal number
t ¼ time
x, y, z ¼ Cartesian coordinates
n ¼ kinematic viscosity
r ¼ density

z ¼ z=ðhðx; yÞÞ ¼ dimensionless
coordinate

Subscript
in ¼ nozzle inlet

Introduction
Recent advances in microfabrication technologies have been so promising that some
micro-fluidics may compete with conventional mechanical and electrical systems.
Fluidic devices such as feedback fluidic oscillators (Zemel and Furlan, 1996; Parry et al.,
1991; Trippetts et al., 1973) and fluidic flowmeters (Lua and Zheng, 2003; Mansy and
Williams, 1989; Boucher and Mazharoglu, 1988) consist of complex three-dimensional
passages. Numerical studies on such fluidic devices are essential to reveal flow
characteristics and to find their optimal geometrical parameters for designing.

Figure 1 shows a typical feedback fluidic oscillator used for spraying water to the
automobile windshield. This type of devise in general has four functional elements,
namely, supply port, control ports, output port and interacting region, as indicated in
the figure. The depth of flow passages is comparatively small as compared with the
device width and its loop length. Because of geometrical complexities, we usually have
to be content with undertaking only two-dimensional numerical analyses for flows
through such fluidic devices (Uzol and Camci, 2001; Lua and Zheng, 2003). However,
the validity of such two-dimensional computational results becomes questionable
when the depth of flow passages is so small that the viscous forces resulting from both
upper and lower walls are not negligible.

In this paper, we shall propose a novel two-dimensional numerical procedure for
analyzing a three-dimensional internal flow through a complex passage with a small

Figure 1.
Fluidic oscillator
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depth. Unlike conventional two-dimensional schemes, the viscous effects of upper and
lower walls on the oscillating flow are fully taken into consideration. We derive the
two-dimensional governing equations by integrating full Navier-Stokes equations in a
three-dimensional form, over the channel depth, and then retaining the wall shear terms
associated with the upper and lower walls. The resulting two-dimensional governing
equations are discretized and numerically solved using simple algorithm coupled with
quick scheme. The fluidic oscillator as shown in Figure 1 is studied numerically under
possible operating conditions for spraying water to the automobile windshield. The
results of oscillating frequency are compared with the experimental data, which
substantiates the validity of this economical numerical procedure and its acquired
accuracy.

Two-dimensional Navier-Stokes equation integrated over the depth
Usually, the flow within the passage stays laminar since the depth is so small.
The continuity and Navier-Stokes equations for incompressible flows are given by:
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The passage in consideration is symmetric with respect to the x-y plane such that the
upper and lower wall geometries are given by z ¼ ^hðx; yÞ; respectively. The
following procedure appears to be similar to that of Hele-Shaw flow. However, it is
noted that h(x, y) can vary spatially, and that both inertial and viscous terms are
retained. Integrating the continuity equation from 0 to h(x, y) with respect to z as:
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Assuming the velocity profiles as:

uðt; x; y; zÞ ¼ �uðt; x; yÞf ðzÞ and vðt; x; y; zÞ ¼ �vðt; x; yÞf ðzÞ ð6Þ

where

z ¼
z
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and �uðx; yÞ and �vðx; yÞ are the velocity components averaged over the depth, such that
the symmetric function f ðzÞ should satisfy:

f ð^1Þ ¼ 0; f 0ð0Þ ¼ 0 and

Z 1

0

f dz ¼ 1 ð8Þ
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The foregoing integral form of the continuity equation (5) may be rewritten as:
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Furthermore, substituting the foregoing velocity profiles into the original form of the
continuity equation (1) as:
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We suppose that the function h(x,y) varies gradually such that:

›h

›x

����
���� ! 1 and

›h

›y

����
���� ! 1 ð11Þ

Since ðzf Þ0 is of the order of unity, the foregoing equation (10) leads to:
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and hence, we have:

wðx; y; zÞ . 0 ð13Þ

Then, the z-momentum equation (4) immediately gives:

p ¼ pðt; x; yÞ ð14Þ

We substitute the velocity profiles and pressure given by equations (6) and (14) into the
x- and y-momentum equations (2) and (3), and then integrate them over the depth
to find:
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where the Leibnitz rule and no-slip conditions are exploited as:
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The foregoing function f may be either u or v. When the function h(x, y) is moderate
enough to satisfy the condition given by equation (11), the integrated momentum
equations (15) and (16) reduce to:
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where one of the simplest candidates for the symmetric function f ðzÞ is assumed as:

f ðzÞ ¼
3

2
ð1 2 z 2Þ ð19Þ

to conform with the no-slip and symmetry conditions given by equation (8).
The integrated momentum equations (17) and (18) along with the integrated continuity
equation (9) form a complete set of the governing equations for a three-dimensional
internal flow through a complex passage with a small depth. These governing equations
subject to no-slip conditions are believed to be valid for all passages described by a
moderately varying arbitrary function h(x, y). In this study, however, only the fluidic
oscillator with constant h, as shown in Figure 1, will be examined numerically.

Numerical calculation procedure
The governing equations (17), (18) and (9) were integrated over a small element and
time interval, so as to establish a set of the discretized equations. The well-known
quick scheme has been adopted for differencing the advection terms. Then, they were
numerically solved using simple algorithm proposed by Patankar and Spalding (1972).
Convergence was measured in terms of the maximum change in each variable during
an iteration. The maximum change allowed for the convergence check was set to 1025,
as the variables are normalized by appropriate references. Further details on this
numerical procedure can be found in Patankar (1980) and Nakayama (1995).

Two-dimensional
numerical
procedure

867



A typical grid system consists of 201 £ 201 nodes with dense and coarse meshes for
the regions inside and outside of the passages, respectively, to cover a large domain of
integration, including both the fluidic devise and its surroundings, namely, 100 £
25 mm: Figure 2 shows a part of dense mesh distributed around the fluidic oscillator
for the present non-uniform grid system. Preliminary calculations were made to
compare the results against those obtained with 301 £ 301 nodes for some selected
cases. In this way, the originally used grid resolution was found sufficient. Moreover,
the time step was set small enough to satisfy Courant condition, after confirming that
any further decrease in the time step does not alter the results significantly.

In this study, the Cartesian grid system is used instead of the body fitted system.
The latter is recommended if the detailed flow field within the passage needs to be
explored. However, when only macroscopic characteristics such as oscillation
frequency are needed, the former would suffice for the purpose. All computations were
performed using the computer system at Shizuoka University Computer Center.

Results and discussion
The fluidic oscillator under investigation, as shown in Figure 1, is one of typical fluidic
devices installed in Japanese automobiles for spraying water to the windshield.
Experimental investigation has been also conducted to measure the frequency of
oscillating flow by a stroboscope. The bulk mean velocity u at the nozzle inlet was
varied from 2.2 to 6.0 m/s, by controlling the voltage of the battery from 5 to 10 V.
For this operation range, the Reynolds number ReLin

based on the inlet width Lin and
velocity u varies from 4,400 to 12,000.

Numerical computations were carried out for the same operation range by feeding
the uniform velocity at the inlet. It takes about ten cycles of oscillations for the velocity
to attain its periodically, fully-developed stage. Figure 3 (a)-(f) depict a complete cycle
of the periodically fully-developed velocity field for the case of ReLin

¼ 4; 400; while
Figure 4 shows the corresponding signals of the oscillating velocity components,
obtained at the selected point P indicated in Figure 2. These figures clearly show that
the oscillation frequency for this case is about f ¼ 1=25 ms ¼ 40 Hz:

As shown in Figure 3(a), the Coanda effect tends to deflect the jet stream towards
the upper wall in the reacting region. The lower pressure region formed between
this deflected stream and the upper wall keeps the jet stream deflected. Because of this

Figure 2.
Mesh around a fluidic
oscillator
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Figure 3.
Predicted oscillating

velocity field

Figure 4.
Predicted temporal

variation of velocity
components
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deflection, the fluid tends to impinge onto the upper feedback port, upstream of the
output port, transmitting the pressure rise back to the control port by the speed of
sound through the outer feedback passage (Figure 3(b)). Then, the transmitted pressure
rise triggers the jet stream to bend towards the opposite (lower) wall (Figure 3(c)).
This sequence is repeated with the stream deflected towards the lower wall so as to
form a complete cycle of oscillation (Figure 3(d)-(f)). It is interesting to see from Figure 4
that the jet stream changes its direction so quickly as the velocity either decreases or
increases within 5 ms. The swift change in the jet direction may also be appreciated
from Figure 3(b) and (c), and also from Figure 3(e) and (f). This trend of swift switching
has been confirmed visually from the experiment.

The foregoing observation prompts us to wonder if the jet would still oscillate when
the outer feedback passages are taken off. Thus, another series of computations were
conducted for such cases, as shown in Figure 5 for a typical case of ReLin

¼ 4; 400:
The figure shows that the jet is under the influence of the Coanda effect, yet, no
oscillations were observed for the range of Reynolds number studied here.

The results of computations carried out for the fluidic oscillator are assembled in
terms of Strouhal number St ; fLin=uin; and are plotted in Figure 6, along with the
experimental data. The predicted Strouhal number St stays almost constant, namely,

Figure 5.
Predicted velocity field for
the case without feedback
passages

Figure 6.
Effect of Reynolds number
on Strouhal number
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St ; fLin=uin ¼ 0:36; over this range of Reynolds number, while that of the experiment
decreases around ReLin

¼ 6; 000: However, both levels of St are quite close, which
substantiates the validity of the present two-dimensional numerical procedure.
As increasing the Reynolds number, the flow may have become turbulent. However,
the mechanism of the fluidic oscillation explained above holds even for the case of
turbulent jets.

Concluding remarks
An efficient two-dimensional numerical calculation procedure has been proposed for a
three dimensional internal flow through a complex passage with a small depth, in which
the viscous forces acting on both upper and lower walls are so significant that they cannot
be neglected. A set of two-dimensional governing equations has been derived by
integrating the full three-dimensional Navier-Stokes equation over the depth. Then, this
set of the governing equations was discretized using a finite volume method, so as to
confirm with simple algorithm. A numerical experiment has been conducted to investigate
the oscillation mechanism of a feedback fluidic oscillator, which is designed to spray water
to an automobile windshield. It has been found that the feedback passage plays an
important role of transmitting the pressure rise to the control port, which triggers the jet to
deflect towards the opposite side wall in the reaction region. The Strouhal number
predicted by the present numerical procedure is in good accord with that of the
experiment, which proves the validity of the present economical numerical procedure.
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